NOTE

A CHARACTERIZATION OF COMPETITION GRAPHS

R.D. DUTTON
Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

R.C. BRIGHAM
Department of Mathematics/Statistics and Computer Science, University of Central Florida, Orlando, FL 32816, USA

Received 7 December 1981
Revised 13 July 1982

Characterizations of competition graphs for arbitrary and acyclic directed graphs are presented.

Let D be a directed graph having no multiple edges. The competition graph of D is an undirected graph G on the same node set as D and having an undirected edge $\{v_i, v_j\}$ if and only if there exists a third node v_k such that (v_i, v_k) and (v_j, v_k) are directed edges in the edge set of D. Competition graphs of acyclic digraphs were employed by Cohen \cite{1,2,3} to study ‘food web’ models in ecology. The various animal species in a geographic area were represented by the node set with a directed edge from node v_i to node v_j if species i ‘preyed’ upon species j. Cohen observed that most food web models tend to be acyclic and justified the restriction to this class of digraphs. The competition graph of such a food web model then exhibits, by undirected edges, those species which compete for food. These graphs have also been studied by Roberts \cite{9,10} and more recently by Opsut \cite{8} who demonstrated that the problem of determining whether or not an arbitrary graph is the competition graph of some acyclic digraph is NP-complete.

Roberts has shown that any undirected graph G can be a competition graph of an acyclic digraph if a sufficient number of isolated nodes are appended to G. Thus we may reject approaches which attempt to characterize competition graphs by ‘forbidden’ subgraphs. Our first result characterizes competition graphs of arbitrary digraphs (cycles and loops allowed). In the following $V(G)$ is the node set of G, $E(G)$ is the edge set and $\theta_1(G)$ is the minimal number of complete subgraphs which cover the edges.

Theorem 1. G is the competition graph of an arbitrary digraph D if and only if $\theta_1(G) \leq n$.
Proof. With \(G \) the competition graph of \(D \) define, for \(1 \leq i \leq n \), \(C_i \) as the subgraph of \(G \) induced by \(\{ v_j \mid (v_i, v_j) \in E(D) \} \). Clearly each \(C_i \) is a complete subgraph of \(G \) and every edge of \(G \) is in some \(C_i \). Thus \(\theta_1(G) = n \). Now assume \(\theta_1(G) = k \leq n \) and let \(C_1, C_2, \ldots, C_k \) be an edge cover of \(G \) by complete subgraphs. Construct \(D \) with \(V(D) = \{ v_1, v_2, \ldots, v_n \} \) and \((v_i, v_j) \in E(D) \) if and only if \(v_i \in V(C_j) \). \(G \) is then the competition graph for \(D \).

Notice that \(D \), constructed as in the proof, may contain loops. For a characterization which does not allow loops see Roberts and Steif [11]. Other characterizations are given by Lundgren and Maybee [6].

We now consider the special case of characterizing competition graphs of acyclic digraphs. We shall need the following result [5].

Lemma. \(D \) is an acyclic digraph if and only if its nodes can be labeled so that
\[
(v_i, v_j) \in E(D) \quad \text{implies} \quad i < j.
\]

Theorem 2. The following statements are equivalent for an undirected graph \(G \) on \(n \) nodes:

(a) \(G \) is the competition graph of some acyclic directed graph \(D \).

(b) \(G \) has a vertex labeling \(u_1, u_2, \ldots, u_n \) so that there are complete subgraphs \(C_1, C_2, \ldots, C_n \) such that

(i) \(u_i \in V(C_j) \) implies \(i < j \), and

(ii) the \(C_i \)'s form an edge cover of \(G \).

(c) \(G \) has complete subgraphs \(C'_1, C'_2, \ldots, C'_{n-2} \) which form an edge cover of \(G \) such that \(|C'_1 \cup C'_2 \cup \cdots \cup C'_{j-1}| \leq j + 1 \) for \(1 \leq i \leq n-2 \).

Proof. (a) \(\Rightarrow \) (b). Choose a vertex labeling \(u_1, u_2, \ldots, u_n \) of \(D \) as prescribed by the lemma. As before, for \(1 \leq j \leq n \), define \(C_j \) as the subgraph of \(G \) induced by \(\{ v_i \mid (v_i, v_j) \in E(D) \} \). Clearly \(C_j \) is complete and (i) and (ii) are satisfied.

(b) \(\Rightarrow \) (c). The first condition of (b) implies \(C_1 \) and \(C_2 \) have no edges. Thus we may define, for \(1 \leq i \leq n-2 \), \(C'_i = C_{i+2} \). For \(1 \leq j \leq n-2 \), if \(v_i \in C'_1 \cup C'_2 \cup \cdots \cup C'_j \), then \(i \leq j + 1 \) by (i).

(c) \(\Rightarrow \) (a). Identify the nodes of \(G \) in the following way. Label as \(v_n \) a node not in \(\bigcup_{i=1}^{n-2} C'_i \), as \(v_{n-1} \) a different node not in \(\bigcup_{i=1}^{n-3} C'_i \), etc. Finally, arbitrarily label the remaining two nodes as \(v_2 \) and \(v_1 \). Let \(D \) be the directed graph on this set of nodes with \(E(D) = \{ (v_i, v_j) \mid v_i \in C'_{j-2} \} \).

\(G \) is easily seen to be the competition graph of \(D \). Furthermore, \((v_i, v_j) \in E(D) \) implies \(i \leq j - 1 \). Thus \(D \) is acyclic by the lemma.

It is interesting to note that characterization (b) in Theorem 2 is similar to that
of Mukhopadhyay [7] for squares of graphs and Acharya and Vartak (as reported by Escalante, Montejano and Rojano [4]) for neighborhood graphs.

References